LLM概述与全景解析

LLM概述与全景 1 什么是 LLM? LLM是基于深度神经网络架构的预测模型。在通过在海量的语料库上进行大规模训练,学习并内化语言的统计规律,语义关联及上下文依赖, 训练目标通常是预测序列中的下...

  • 0
  • 0
  • 洺熙
  • 发布于 2025-07-04 16:14:46
  • 阅读 ( 3082 )

RealVul: 基于大语言模型训练微调的PHP漏洞检测框架深度解析

LLM赋能安全领域前沿研究“甚少”,在研究该领域的前沿论文科研时发现了一个很开创性的漏洞检测框架,本文的核心目标是设计一个针对PHP漏洞检测的LLM框架RealVul,以弥补现有研究的不足。具体而言,关注如何从真实项目中定位漏洞触发点并提取有效样本、如何通过代码预处理突出漏洞特征、以及如何利用半合成数据扩充稀缺样本

  • 3
  • 0
  • Bear001
  • 发布于 2025-10-16 09:00:01
  • 阅读 ( 2686 )

一文了解图像的隐形噪声如何欺骗 AI

对抗图像是一种精心设计的输入数据,通过对原始图像进行细微修改,使机器学习模型(尤其是深度神经网络)产生错误的分类输出。

  • 2
  • 2
  • Wh1tecell
  • 发布于 2025-10-24 09:00:02
  • 阅读 ( 2124 )

DeepTective: 基于混合图神经网络的自动化漏洞挖掘框架

PHP在Web应用中的普遍漏洞以及开发者、安全公司和白帽黑客为解决这些问题所做的努力。传统的静态、流和污点分析方法在性能上存在局限性,数据挖掘方法常受到误报/漏报的困扰,而近期基于深度学习的模型(主要是基于LSTM)并不天生适合程序语义等图结构数据。DeepTective是一种基于深度学习的PHP源代码漏洞检测方法,其核心创新在于采用混合架构,结合门控循环单元(GRU)处理代码令牌的线性序列(语法信息),以及图卷积网络(GCN)处理控制流图(CFG)(语义和上下文信息)

  • 0
  • 0
  • Bear001
  • 发布于 2025-10-23 09:47:12
  • 阅读 ( 1944 )

黑灰产从绕过到自建“无约束”的AI模型过程

市面上主流的大模型服务,都已经建立一套相对成熟的安全架构,这套架构通常可以概括为三层过滤防御体系 1. 输入检测:在用户请求进入模型之前,通过黑白词库、正则表达式和语义分析,拦截掉那些意图明显的恶意问题。 2. 内生安全:模型本身经过安全对齐,通过指令微调和人类反馈强化学习(RLHF),让模型从价值观层面理解并拒绝执行有害指令。 3. 输出检测:在模型生成响应后,再次进行扫描,确保内容合规。。但攻击者依然在生成恶意内容、钓鱼邮件,甚至大规模恶意软件。

  • 3
  • 1
  • 洺熙
  • 发布于 2025-11-28 09:00:02
  • 阅读 ( 1568 )

通过微调与拒绝向量消融实现大模型越狱的实践

AI突破限制的多种手段 前言:目前看到过很多越狱AI的手法,绝大多数都是使用提示词注入来对互联网上现有AI进行越狱,本文章中介绍另外两个方法进行越狱。

  • 4
  • 7
  • 画老师
  • 发布于 2025-12-09 09:00:01
  • 阅读 ( 1100 )